
Queuing Theory

Abstract

These notes present some findings we made when investigating the prob-
lem of optimizing the queue policy to perform fast messages requests and
processing. After describing the theory which we learnt in the process we
present the analysis setup we implemented and the obtained results.

Introduction and Motivations

The problem started when we wanted to find an optimal configuration for a mes-
saging system in terms of buffer size, number of threads and queue blocking policy,
or at least to get a feeling of which variables come into play and which are the
most affecting.
In particular we are exploiting the OSGi Push Stream API, which differs from
the Java Stream API because it expects data to be generated and processed
asynchronously. The most important difference is that the return value of a
Push Stream’s terminal operation is a Promise. This allows the Stream of asyn-
chronously arriving data to be processed in a non-blocking way. This constitutes
an event-based system, meaning that data events may occur far more rapidly than
they can be consumed. In order to manage such data flow, the first thing you can
do is using more threads, but sooner or later your system will run out of capacity,
and events will have to be queued until they can be processed. Buffering is sup-
ported by the Push Stream specification, but it is useful only when dealing with
short-term spikes in the event flow. When the long-term arrival rate is higher than
the processing rate we can discard some of the events or fail the stream, depending
on the buffer queue policy, or apply what is called back pressure, meaning tell to

1



the event source how long it has to wait before sending other events, in such a way
the consumer has the time to catch up. All these information (and much more)
can be found in the OSGi Push Stream Specification (Compendium Release 7).
In order to solve our problem, the first thing we did was trying to grab some
general piece of information about the problem, by simply searching through the
Web. We discovered that there exists a whole theory beyond this subject, the so
called Queuing Theory, which models and derives useful expressions in order to
estimate the main quantities into play. Citing Wikipedia:

Queuing Theory is the mathematical study of waiting lines, or
queues. A queueing model is constructed so that queue lengths

and waiting time can be predicted.

This applies to a huge number of phenomena, if you think about it: from wait-
ing lines at the airport or at the supermarket, to queue when trying to get the line
to a call center operator, to systems of messages requests and consumptions in a
message system.
The last case is what we had in mind when we started looking into queuing the-
ory. We had a messaging system, where messages, arriving with a certain arrival
frequency, are put into a buffer waiting to be processed by a certain number of
threads which will perform some operations on these messages taking a certain
processing time. What we wanted to do was trying to understand which are the
most important factors which come into play and affect the total system time, for
instance, and whether we could optimize some of these factors in such a way to
improve the overall performance of the system.

Some Theory

In this section we are going to briefly summarize the theoretical information we
found out in the process. A lot of documentation about Queuing Theory is avail-
able, thus, if you want to learn more, just take a look on the Web (as we did).
First, some useful notation. A queue system is usually identified through an
acronysm of the form A/B/C/D/E, where:

• A stands for the distribution of the arrival time, meaning how the inter-
arrival time with which the data come into the system is distributed;

• B stands for the distribution of the processing time, meaning how the fre-
quency at which the system performs whatever kind of operation it needs to
do on the data is distributed;

2



• C stands for the number of parallelism we have in our system; in our case
this will represent the number of threads we have to process the data;

• D stands for the system capacity, meaning the total number of data which
are allowed in the system (both waiting to be processed and being processed)
before some blocking or rejecting policy comes into play;

• E stands for the total number of data (in case the system expects a finite
number of data).

The case we studied was the so called M/M/c/d/∞, meaning that the requests
arrive according to a Poisson process with rate λ, that is the interarrival times are
independent, exponentially distributed random variables with parameter λ, and
the processing time follows an exponential distribution as well, with parameter
µ. We are assuming to have a total number of c threads to process the data and
a capacity of d, which will be the sum of the buffer size and the number of threads.

Queuing Theory helps us computing some useful quantities, such as:

• Lq: the average length of the queue (in our case, how many messages, on
average, are in the buffer);

• L: the average length of the system (in our case, how many messages, on
average, are in the system);

• T q: the average time spent in the queue (in our case, the average time
messages spent in the buffer);

• T : the average time spent in the system (in our case, the average time
messages spent in the whole system).

In order to compute these quantities we need first to compute the probability,
at the equilibrium, that the system is in an idle state (meaning no messages in
the system), and the probability that n messages are in the system. These two
quantities are in general denoted with P0 and Pn, respectively, and, for our case,
they can be written as:

P0 =


1

ρc

c!
1−ad−c+1

1−a +
∑c−1
i=0

ρi

i!

if a 6= 1

1
ρc

c!
(d−c+1)+

∑c−1
i=0

ρi

i!

if a = 1
(1)

Pn =

{
λn

n!µn
P0 if n < c

λn

cn−cc!µn
P0 if c ≤ n ≤ d

(2)

3



where λ is the number of messages arriving in a unit time, µ the number of
data processed in a unit time by each of the c threads, ρ = λ/µ and a = ρ/c.
Using these quantities we get:

Lq =

{
ρcaP0

c!(1−a)2 [1− ad−c+1 − (1− a)(d− c+ 1)ad−c] if a 6= 1
ρcaP0

2c!
(d− c)(d− c+ 1) if a = 1

(3)

L = Lq + ρ(1− Pd) (4)

T q =
Lq

λ(1− Pd)
(5)

T =
L

λ(1− Pd)
(6)

Understanding the theory

After collecting the information from the theory, we wanted to have an idea of how
all these expressions look like, just to have a feeling of what we were dealing with.
Thus we created a simple setup which allows to compute the average system time,
T , for different configurations, namely varying the arrival rate (1/λ), the process-
ing rate (1/µ), the number of threads (c) and the system capacity (d). Here are
some plots which illustrate our findings.

0 10 20 30 40 50
Input Rate [ms]

0.5

1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 S
ys

te
m

 T
im

e 
[s

ec
]

Buffer Size 150

Buffer Size 100

Buffer Size 50

Buffer Size 32

Buffer Size 150

Buffer Size 100

Buffer Size 50

Buffer Size 32

8 Nodes,Processing Rate 200ms

0 10 20 30 40 50
Input Rate [ms]

1

2

3

4

5

6

A
ve

ra
ge

 S
ys

te
m

 T
im

e 
[s

ec
]

8 Nodes,Processing Rate 304ms

Buffer Size 150

Buffer Size 100

Buffer Size 50

Buffer Size 32

Figure 1: Average System Time (in sec) as a function of different input times (1/λ
in ms) for two fixed average processing rates of 1/200 mex/ms (left panel) and
1/304 mex/ms (right panel), 8 threads and different buffer sizes.

4



As you can see from the plots, regardless from the buffer size, which just
regulates the maximum of the curve, the average system time remains quite stable
for large values of the input frequency. When this reaches a certain critical value,
then, we have a sudden decrease of the system time which immediately stabilizes
at lower values. Looking at the same distribution for different processing rates it
can be seen that the change in the curve slope depends on the ratio between the
arrival and processing rate.
This was a good information for us, because this means that, if we are able to
predict to some extent how fast the messages are arriving and how fast we will be
in processing them, we could adjust the arrival time by delaying it in such a way
to reduce the system time.

Looking at the actual data

After obtaining some results from the theory, we needed to check whether actual
data behave as predicted or whether there were factors we did not take into account
in the proper way.
To do this, we performed some JUnit tests under different assumptions of arrival
and processing rate distributions. As we already mentioned in the Introduction,
our configuration is a bit more complex with respect to the one we treated in
theory. In particular we are using OSGi Push Stream to consume the data from
an event source. In our tests we considered an event source with a buffer of 100
elements, and a push stream with a buffer of 32 elements, a blocking queue policy
and a back pressure time of 5 ms, which processes the data through 8 threads. We
tested two queue policies to be applied to the event source:

• Standard Blocking Policy (SBP) in which the data enter the buffer as
soon as they arrive into the system and when this is full new entries are
blocked;

• Delay Input Rate Policy (DIRP) in which we keep track of the process-
ing time of the last operation and of the arrival time between two consequent
messages, in order to compute the ratio between the two rates and adjust
the arrival time when the request comes too fast. In this way we are trying
to shift all our messages to the right-hand part of the curves in Figure 1,
making the average system time decrease.

5



We assumed different combinations of distributions for the inter arrival time
(ta) of the messages and the processing time (tp). In particular we studied the
case:

• ta taken from a uniform distribution centered at different values between 5
and 50 ms, and tp fixed at 200 ms;

• ta and tp extracted from an exponential distribution of the form exp−λt with
λ = 30 ms and λ = 225 ms, respectively;

• ta extracted from an exponential distribution of the form exp−λt with λ =
30 ms and tp extracted from a log-normal distribution with mean µ = 225 ms
and deviation σ = 50 ms;

• ta fixed at 30 ms for the first 300 messages and then fixed at 15 ms for the
last 200 messages, while tp fixed for all messages at 200 ms;

• ta fixed at 30 ms for the first 300 messages and then fixed at 15 ms for the
last 200 messages, while tp extracted from a log-normal distribution with
mean µ = 225 ms and deviation σ = 50 ms;

• ta fixed at 30 ms and tp varying from 200 ms for the first 300 messages to
500 ms for the last 200 messages;

• ta extracted from an exponential distribution of the form exp−λt with λ =
30 ms and tp varying from 200 ms for the first 300 messages to 500 ms for
the last 200 messages.

In the following we are going to summarize the results of our tests.

Case 1: ta uniform/tp fixed

In this test we wanted first to study the distribution of the average system time as
a function of the arrival frequency, in order to check whether the data were well
described by the theoretical distributions we obtained.
In order to do that, we generated 500 messages with a variable input frequency,
extracted from uniform distributions centered at different values between 5 and
50 ms, and with a fixed processing frequency of 1/200 mex/ms. We then computed
the average input frequency and the average system time. We repeated the same
experiment 50 times, for both the queue policies under study. The results are
shown in the following figure.

6



10 15 20 25 30 35 40
Average Input Rate [ms]

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

 S
ys

te
m

 T
im

e 
[m

s]

Standard Blocking Policy

DIR Policy

Fixed Processing Rate 200ms, 8 Threads, Evt Source Buffer 100

Push Stream Block Policy, Buffer 32, Push Back Pressure 5ms

Average System Time vs Average Input Rate

Figure 2: Average system time (in ms) vs average input time (in ms) for a fixed
processing time of 200 ms. The SBP (black points) is compared to the DIRP (red
points).

As you can see from the plot, the distribution for the SBP well reflects the one
we was expecting from the theory, both in shape and in the overall scale.
Furthermore, applying the DIRP we can see that the average system time for
events which are arriving at higher frequency in the system can be drastically
reduced at the level of those arriving slower.

Case 2: ta exponential/tp exponential

In this test we repeated the procedure described in the previous case, but extracting
now both ta and tp from an exponential distribution. In order to do that we
extracted a random number u from 0 to 1 and then compute our exponential
random number as:

− ln(u)× λ (7)

where λ = 30 ms for ta and λ = 225 ms for tp. The results we obtained are
shown in the following figure.

7



27 28 29 30 31 32 33
Average Interarrival Time [ms]

300

400

500

600

700

800

900

1000

A
ve

ra
ge

 S
ys

te
m

 T
im

e 
[m

s] InExpProcExp Standard Blocking Policy

DIR Policy

Average System Time Distribution

Figure 3: Average system time (in ms) vs average input time (in ms) for an
exponentially distributed arrival and processing time. The SBP (black points) is
compared to the DIRP (red points).

Also in this case, it can be seen that the DIRP results in a more stable average
system time with respect to the SBP.

Case 3: ta exponential/tp log-normal

In this case we assumed ta distributed exactly as in the previous case, while for tp we
assumed a log-normal distribution with a mean of 225 ms and a deviation of 50 ms.
This distribution takes into account the fact that processing time distributions are
typically skewed to the right, and never negative. In order to generate a random
number extracted from a log-normal distribution with mean µ and deviation σ
we first generate a random number y extracted from a Gaussian distribution with
mean m and deviation s given by:

s2 = ln(1 +
σ2

µ2
) (8)

8



m = ln(µ)− s2

2
(9)

and then we obtain our log-normal distributed number x as:

x = ey (10)

The results we obtained in terms of average system time are shown in the figure
below.

26 27 28 29 30 31 32 33
Average Interarrival Time [ms]

300

400

500

600

700

800

A
ve

ra
ge

 S
ys

te
m

 T
im

e 
[m

s] InExpProcLogNorm Standard Blocking Policy

DIR Policy

Average System Time Distribution

Figure 4: Average system time (in ms) vs average input time (in ms) for an ex-
ponentially distributed arrival time and a log-normal distributed processing time.
The SBP (black points) is compared to the DIRP (red points).

Once again, the DIRP mantains the average system time to a lower and more
stable value with respect to the SBP.

9



Case 4: ta changing/tp fix

With this and the subsequent test we wanted to investigate what happens to the
system time in case of a sudden increase of the arrival frequency. For this we
generated 500 messages with both the policies under study, keeping the processing
time fixed at 200 ms. The first 300 messages are generated with a frequency of
1/30 mex/ms while the last 200 with a frequency of 1/15 mex/ms. We stored for
each of the messages the system time and an id, which simply indicates the order
the messages were created. The results are shown in the figure below.

0 100 200 300 400 500
Message Id

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

A
ve

ra
ge

 S
ys

te
m

 T
im

e 
[m

s] InRapidChangeProcFix
Standard Blocking Policy

DIR Policy

Average System Time Distribution

Figure 5: Average system time (in ms) vs message creation order for a fixed
processing time of 200 ms, with a sudden change in input frequency. The SBP
(black points) is compared to the DIRP (red points).

As you can see from the two curves, as soon as the input frequency is 1/30 mex/ms,
the two policies behave almost identically, which is what we expected, since in this
case the ratio between the input and processing frequencies is below the critical
value, so we would be in the right-hand side of Figure 1. When the input fre-
quency suddenly increases, meaning messages start to come into the system in a

10



faster way, the system time increases quite drastically for the SBP, while for the
DIRP it remains stable.

Case 5: ta changing/tp log-normal

This test is exactly the same as the previous one, except for the fact that now the
processing time is not kept fixed, but is assumed to be log-normally distributed.
The results are shown in the figure below.

0 100 200 300 400 500
Message Id

500

1000

1500

2000

2500

3000

A
ve

ra
ge

 S
ys

te
m

 T
im

e 
[m

s] InRapidChangeProcLogNormStandard Blocking Policy

DIR Policy

Average System Time Distribution

Figure 6: Average system time (in ms) vs message creation order for a log-normally
distributed processing time, with a sudden change in input frequency. The SBP
(black points) is compared to the DIRP (red points).

Also in this case, we can see how the DIRP makes the system time to remain
quite stable with respect to the case of the SBP.

Case 6: ta fix/tp changing

In this and the next test we wanted to investigate what happens to the system when
the processing frequnecy suddenly decreases. For this we generated 500 messages

11



for both the policies under study, keeping the input rate fixed at 1/30 mex/ms.
The first 300 messages are processed with a processing time of 200 ms, while the
other 200 with a processing time of 500 ms. We stored for each of the messages
the system time and an id, which simply indicates the order the messages were
created. The results are shown in the figure below.

0 100 200 300 400 500
Message Id

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
ge

 S
ys

te
m

 T
im

e 
[m

s] InFixProcRapidChangeStandard Blocking Policy

DIR Policy

Average System Time Distribution

Figure 7: Average system time (in ms) vs message creation order for a fixed input
time of 30 ms, with a sudden change in processing frequency. The SBP (black
points) is compared to the DIRP (red points).

Also in this case it can be seen how the two policies perform in the same way in
terms of system time when the processing rate is kept constant. When the change
occurs then, the DIRP increases a bit the system time, which then remains stable
under the 1 sec level; the SBP, instead, passes from a system time below 1 sec to
7 sec.

Case 7: ta exponential/tp changing

This test is the same as the previous one, except for the fact that we assumed ta
exponentially distributed. The results are shown in the figure below.

12



0 100 200 300 400 500
Message Id

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 S
ys

te
m

 T
im

e 
[m

s] InExpProcRapidChangeStandard Blocking Policy

DIR Policy

Average System Time Distribution

Figure 8: Average system time (in ms) vs message creation order for an expo-
nentially distributed input time of 30 ms, with a sudden change in processing
frequency. The SBP (black points) is compared to the DIRP (red points).

Despite some more fluctuations, not really appreciable at the scale of the plot
but expected due to the fact that in this case the arrival rate is not constant, the
results is again the same: the DIRP mantains the system time to a more stable
value even after the sudden change of the processing time.

Conclusions

We presented the study we did in order to better understand how the average
system time behaves as a function of the arrival and processing rates, and of the
other variables into play, such as the buffer size. We briefly described the theory we
follwed in order to develop a proper new queue policy, suitable for our needs. We
tested such policy and compared it to a standard blocking policy under different
assumptions for the distributions of the arrival and processing rate, showing a
significant improvement in terms of both stability and overall performance.

13


