
Asynchronous Communication
in Distributed Environments!

OSGi Messaging Specification

Mark Hoffmann
Data In Motion Consulting GmbH

1

About Data In Motion

● Founded in 2010
● Located in Jena/Thuringia - Germany
● Consulting, Training, Independen RnD

○ Distributed environments
○ OSGi
○ Model-Driven Software Development

● Wide Range of Industries: Medical, Insurance,
Transportation, Traffic, Public Sector

2

Content

● Introduction
● Publishing Messages
● Subscribing Messages
● MessageContext
● Reply-To Behavior
● Acknowledgment
● Features

3

Introduction

● Asynchronous messaging important in IoT area and
distributed environments

● Wide variety of messaging protocols (MQTT, XMPP,
Kafka, AMQP)

● Different implementation for same protocol
● Asynchronous event handling with reactive streams

4

History of Messaging in OSGi

● Event Admin Specification - In-VM eventing
● Distributed Eventing - RFC-214
● MQTT Adapter - RFC-229
● Reactive: Promises and PushStreams
● Talk at ECE 2017 about Messaging and PushStreams
● Custom Messaging implementation Gecko-Messaging
● OSGi Messaging - RFC 246

5

What is it about

● Easy-to-use API for messaging in OSGi
● Integration of 3rd-party messaging solutions into OSGi
● API for a common set of messaging use-cases
● Easy to use via Declarative Services
● Extensibility for vendor specific customizations
● Capabilities for mandatory and optional functionality
● Introspection - Message Runtime Service

6

Publishing “Hello World”

7

Hmmm

8

Publisher Services

● Get Services using OSGi DS
● osgi.messaging.protocol target filter

9

Publish “Hello World”

10

Subscribe

11

Messages / MessageContext

● Message
○ ByteBuffer Content
○ MessageContext for Meta-Information

● Message Context
○ Channel Information
○ Content-Type / Encoding
○ Correlation-ID
○ Extension-Map

● Message Context Builder Factory

12

Reply-To-Behavior

13

● Optional in Messaging Specification
● RPC style behavior - Send request, receive an answer
● Not all protocols or implementations support that
● Availability is announced using features and capabilities
● Reply-To Publisher
● Reply-To Whiteboard provided from implementation
● User registers ReplyToSubscriptionHandler that bind to a

whiteboard

Reply-To-Publishing

14

Reply-To-Subscription

15

● ReplyToSubscriptionHandler
● ReplyToSingleSubscriptionHandler
● ReplyToManySubscriptionHandler

Reply-To-Whiteboard

16

Acknowledgement

17

● Optional in the specification
● Announced via capabilities and features
● Support for acknowledge and rejection
● Lambda and Service based filtering, acknowledge

handling
● Direct Acknowledging before message enters the stream
● Programmatic Acknowledging within a PushStream

Direct Acknowledgement

18

Programmatic Acknowledgement

19

Features

20

● Functional Features announce functionality
● Extension Features can also be used for configuration
● Set via extension map in context builder
● Examples:

○ auto-acknowledge
○ quality of service
○ last will message

Features Example

21

What happens next?

22

● RFC 246 is finished
● Specification writing already in progress
● Reference implementation
● MQTT as protocol for the RI
● Compliance Tests
● Availability in next OSGi Enterprise release

Thanks for listening!
Resources:
Compendium: https://docs.osgi.org/specification/osgi.cmpn/7.0.0/introduction.html
Github: https://github.com/osgi/design
OSGi: https://osgi.org
Twitter: @motion_data
Web: https://www.datainmotion.de

23

https://docs.osgi.org/specification/osgi.cmpn/7.0.0/introduction.html
https://github.com/osgi/design
https://osgi.org
https://www.datainmotion.de

